02-17-2017
磁控新升级 这项技术能单独控制微型机器人完成精准药物投送
控制机器人在人体内的运动一般要靠两种方法:要么打造一种自带推进器和导航系统的微型潜水艇机器人,要么就得靠磁场来牵着微型机器人的鼻子走。不过,前者做起来很复杂,后者虽然较易实现,但一块大磁铁如果冬天放在身上一定很酸爽,最重要的是,这种方法很难一次控制多个微型机器人,为什么呢?因为顾名思义,“磁场”是一种“场”,它的效力很难被限定在某一特定区域。
在实际运用中,如果你想用一台核磁共振(MRI)扫描仪来创造磁场,那么无论这个磁场的梯度如何,MRI 触及范围的所有东西都会受到影响,因此如果你想让两个微型机器人同时做不同的事,几乎是天方夜谭。
当然,事情都不是绝对的,要想让微型机器人们学会“左右互搏”术,可以从差异化这个角度入手。这样一来,持续的控制输入就来对机器人造成不同的影响。不过,想让这种方法在同质化机器人身上起效就难得多了。
天无绝人之路,德国汉堡飞利浦研究院在 Science Robotics 上的论文就为我们指了条明路。该论文介绍了一种新技术,即使大量机器人采用同样材质制作,还位于同一磁场影响下,我们依然可以利用磁场选择性的驱动某个微型机器人,甚至精确到它们身上的某个组件。
是不是很酷?那么这样神奇的控制能力到底是如何实现的呢?且听我细细道来。
设备内部的整体磁场开了一个洞,也就是所谓的“自由场点”(FFP),多个磁场都会在这里碰面(每个磁场都由独立线圈生成)。在 FFP 中,磁场的梯度很低,因此也就丧失了驱动物体移动的能力,而这就是对微型机器人进行单独控制的关键切入点。
你可以在需要的区域,通过调大磁场梯度来“锁”住不在 FFP 控制范围内的任何物体。随后,借助温和的旋转磁场,就能让 FFP 内的物体旋转起来。通过对 FFP 位置的移动,你就能选择性的让某些物体自由旋转起来。
在这一案例中,那个强大的“锁”其实是在磁场下作用向一边倾斜的螺旋体,它们无法旋转。与其不同的是,FFP 是一个零倾斜的区域,这就意味着在这里螺旋体可以自由旋转。这项研究中用到的硬件可以单独驱动螺旋体,只要螺旋体间间距不超过 3 毫米就有效。
在实际运用中,如果你想用一台核磁共振(MRI)扫描仪来创造磁场,那么无论这个磁场的梯度如何,MRI 触及范围的所有东西都会受到影响,因此如果你想让两个微型机器人同时做不同的事,几乎是天方夜谭。
当然,事情都不是绝对的,要想让微型机器人们学会“左右互搏”术,可以从差异化这个角度入手。这样一来,持续的控制输入就来对机器人造成不同的影响。不过,想让这种方法在同质化机器人身上起效就难得多了。
天无绝人之路,德国汉堡飞利浦研究院在 Science Robotics 上的论文就为我们指了条明路。该论文介绍了一种新技术,即使大量机器人采用同样材质制作,还位于同一磁场影响下,我们依然可以利用磁场选择性的驱动某个微型机器人,甚至精确到它们身上的某个组件。
是不是很酷?那么这样神奇的控制能力到底是如何实现的呢?且听我细细道来。
设备内部的整体磁场开了一个洞,也就是所谓的“自由场点”(FFP),多个磁场都会在这里碰面(每个磁场都由独立线圈生成)。在 FFP 中,磁场的梯度很低,因此也就丧失了驱动物体移动的能力,而这就是对微型机器人进行单独控制的关键切入点。
你可以在需要的区域,通过调大磁场梯度来“锁”住不在 FFP 控制范围内的任何物体。随后,借助温和的旋转磁场,就能让 FFP 内的物体旋转起来。通过对 FFP 位置的移动,你就能选择性的让某些物体自由旋转起来。
在这一案例中,那个强大的“锁”其实是在磁场下作用向一边倾斜的螺旋体,它们无法旋转。与其不同的是,FFP 是一个零倾斜的区域,这就意味着在这里螺旋体可以自由旋转。这项研究中用到的硬件可以单独驱动螺旋体,只要螺旋体间间距不超过 3 毫米就有效。